Answer any *five* questions from the following:

(a) How can an EX-OR gate be used as a controlled inverter?

1.

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 3rd Semester Examination, 2021-22

ELSACOR06T-ELECTRONICS (CC6)

Time Allotted: 2 Hours Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

GROUP-A

 $2 \times 5 = 10$

	(b)	Realise a three input NAND gate using two input NAND gates only.	
	(c)	Define fan-out of a gate.	
	(d)	How can a decoder be used as a de-multiplexer?	
	(e)	Convert a J-K flip-flop to a D flip-flop.	
	(f)	Convert the binary number 101100110 to Gray-code.	
	(g)	Express two numbers 926 and 827 in BCD form and add them.	
	(h)	Do the following subtraction using 2's complement 72–48.	
		GROUP-B	
		Answer any six questions from the following	$5 \times 6 = 30$
2.	(a)	If $Y = A'B + BC$, express Y in POS form.	3+2
	(b)	Subtract 10110 – 11011 using 2's complement method.	
3	(a)	Show that a negative logic OR gate is equivalent to a positive logic AND gate.	2+3
٥.	` /	Design a EX-OR gate using NAND gates only.	213
4	(-)	Dealine a 2 inner	1.2.2
4.	(a)	Realise a 2-input	1+2+2
		(i) OR gate	
		(ii) NAND gate using 2:1 MUX only	
	(b)	Realise the function $Y = \sum m(1, 2, 4, 7, 9, 13, 15)$ using a 8:1 MUX	

CBCS/B.Sc./Hons./3rd Sem./ELSACOR06T/2021-22

- 5. (a) Explain 'Race' condition in a S-R flip-flop.
 - (b) Design a J-K flip-flop using an S-R flip-flop.
- 6. Design a 3 to 8 line active low decoder using NAND gates only.

5

2+3

7. Explain the following:

 $2\frac{1}{2} + 2\frac{1}{2}$

- (i) Entity Declaration
- (ii) Architecture Declaration.
- 8. (a) Explain the difference between an encoder and a priority encoder.

2+3

- (b) Design a 2-bit priority encoder.
- 9. Explain the Data Flow modeling scheme using suitable example.

5

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

-----×----

3063